/*------------------------------------------------------------------------*/
/* File: examples/src/qpex1.c */
/* Version 9.0 */
/*------------------------------------------------------------------------*/
/* Copyright (C) 1997-2003 by ILOG. */
/* All Rights Reserved. */
/* Permission is expressly granted to use this example in the */
/* course of developing applications that use ILOG products. */
/*------------------------------------------------------------------------*/
/* qpex1.c - Entering and optimizing a quadratic programming problem */
/* Bring in the CPLEX function declarations and the C library
header file stdio.h with include of cplex.h. */
#include <ilcplex/cplex.h>
#include <stdlib.h>
/* Bring in the declarations for the string functions */
#include <string.h>
/* Include declaration for function at end of program */
static int
setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **matval_p, double **lb_p,
double **ub_p, int **qmatbeg_p, int **qmatcnt_p,
int **qmatind_p, double **qmatval_p);
static void
free_and_null (char **ptr);
/* The problem we are optimizing will have 2 rows, 3 columns,
6 nonzeros, and 7 nonzeros in the quadratic coefficient matrix. */
#define NUMROWS 2
#define NUMCOLS 3
#define NUMNZ 6
#define NUMQNZ 7
int
main (void)
{
/* Declare pointers for the variables and arrays that will contain
the data which define the LP problem. The setproblemdata() routine
allocates space for the problem data. */
char *probname = NULL;
int numcols;
int numrows;
int objsen;
double *obj = NULL;
double *rhs = NULL;
char *sense = NULL;
int *matbeg = NULL;
int *matcnt = NULL;
int *matind = NULL;
double *matval = NULL;
double *lb = NULL;
double *ub = NULL;
int *qmatbeg = NULL;
int *qmatcnt = NULL;
int *qmatind = NULL;
double *qmatval = NULL;
/* Declare and allocate space for the variables and arrays where we
will store the optimization results including the status, objective
value, variable values, dual values, row slacks and variable
reduced costs. */
int solstat;
double objval;
double x[NUMCOLS];
double pi[NUMROWS];
double slack[NUMROWS];
double dj[NUMCOLS];
CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;
int i, j;
int cur_numrows, cur_numcols;
/* Initialize the CPLEX environment */
env = CPXopenCPLEX (&status);
/* If an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */
if ( env == NULL ) {
char errmsg[1024];
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;
}
/* Turn on output to the screen */
status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
if ( status ) {
fprintf (stderr,
"Failure to turn on screen indicator, error %d.\n", status);
goto TERMINATE;
}
/* Fill in the data for the problem. */
status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj,
&rhs, &sense, &matbeg, &matcnt, &matind,
&matval, &lb, &ub, &qmatbeg, &qmatcnt,
&qmatind, &qmatval);
if ( status ) {
fprintf (stderr, "Failed to build problem data arrays.\n");
goto TERMINATE;
}
/* Create the problem. */
lp = CPXcreateprob (env, &status, probname);
/* A returned pointer of NULL may mean that not enough memory
was available or there was some other problem. In the case of
failure, an error message will have been written to the error
channel from inside CPLEX. In this example, the setting of
the parameter CPX_PARAM_SCRIND causes the error message to
appear on stdout. */
if ( lp == NULL ) {
fprintf (stderr, "Failed to create problem.\n");
goto TERMINATE;
}
/* Now copy the LP part of the problem data into the lp */
status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs,
sense, matbeg, matcnt, matind, matval,
lb, ub, NULL);
if ( status ) {
fprintf (stderr, "Failed to copy problem data.\n");
goto TERMINATE;
}
status = CPXcopyquad (env, lp, qmatbeg, qmatcnt, qmatind, qmatval);
if ( status ) {
fprintf (stderr, "Failed to copy quadratic matrix.\n");
goto TERMINATE;
}
/* Optimize the problem and obtain solution. */
status = CPXqpopt (env, lp);
if ( status ) {
fprintf (stderr, "Failed to optimize QP.\n");
goto TERMINATE;
}
status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
if ( status ) {
fprintf (stderr, "Failed to obtain solution.\n");
goto TERMINATE;
}
/* Write the output to the screen. */
printf ("\nSolution status = %d\n", solstat);
printf ("Solution value = %f\n\n", objval);
/* The size of the problem should be obtained by asking CPLEX what
the actual size is, rather than using what was passed to CPXcopylp.
cur_numrows and cur_numcols store the current number of rows and
columns, respectively. */
cur_numrows = CPXgetnumrows (env, lp);
cur_numcols = CPXgetnumcols (env, lp);
for (i = 0; i < cur_numrows; i++) {
printf ("Row %d: Slack = %10f Pi = %10f\n", i, slack[i], pi[i]);
}
for (j = 0; j < cur_numcols; j++) {
printf ("Column %d: Value = %10f Reduced cost = %10f\n",
j, x[j], dj[j]);
}
/* Finally, write a copy of the problem to a file. */
status = CPXwriteprob (env, lp, "qpex1.lp", NULL);
if ( status ) {
fprintf (stderr, "Failed to write LP to disk.\n");
goto TERMINATE;
}
TERMINATE:
/* Free up the problem as allocated by CPXcreateprob, if necessary */
if ( lp != NULL ) {
status = CPXfreeprob (env, &lp);
if ( status ) {
fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
}
}
/* Free up the CPLEX environment, if necessary */
if ( env != NULL ) {
status = CPXcloseCPLEX (&env);
/* Note that CPXcloseCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */
if ( status ) {
char errmsg[1024];
fprintf (stderr, "Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
}
}
/* Free up the problem data arrays, if necessary. */
free_and_null ((char **) &probname);
free_and_null ((char **) &obj);
free_and_null ((char **) &rhs);
free_and_null ((char **) &sense);
free_and_null ((char **) &matbeg);
free_and_null ((char **) &matcnt);
free_and_null ((char **) &matind);
free_and_null ((char **) &matval);
free_and_null ((char **) &lb);
free_and_null ((char **) &ub);
free_and_null ((char **) &qmatbeg);
free_and_null ((char **) &qmatcnt);
free_and_null ((char **) &qmatind);
free_and_null ((char **) &qmatval);
return (status);
} /* END main */
/* This function fills in the data structures for the quadratic program:
Maximize
obj: x1 + 2 x2 + 3 x3
- 0.5 ( 33x1*x1 + 22*x2*x2 + 11*x3*x3
- 12*x1*x2 - 23*x2*x3 )
Subject To
c1: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
End
*/
static int
setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **matval_p, double **lb_p,
double **ub_p, int **qmatbeg_p, int **qmatcnt_p,
int **qmatind_p, double **qmatval_p)
{
char *zprobname = NULL; /* Problem name <= 16 characters */
double *zobj = NULL;
double *zrhs = NULL;
char *zsense = NULL;
int *zmatbeg = NULL;
int *zmatcnt = NULL;
int *zmatind = NULL;
double *zmatval = NULL;
double *zlb = NULL;
double *zub = NULL;
int *zqmatbeg = NULL;
int *zqmatcnt = NULL;
int *zqmatind = NULL;
double *zqmatval = NULL;
int status = 0;
zprobname = (char *) malloc (16 * sizeof(char));
zobj = (double *) malloc (NUMCOLS * sizeof(double));
zrhs = (double *) malloc (NUMROWS * sizeof(double));
zsense = (char *) malloc (NUMROWS * sizeof(char));
zmatbeg = (int *) malloc (NUMCOLS * sizeof(int));
zmatcnt = (int *) malloc (NUMCOLS * sizeof(int));
zmatind = (int *) malloc (NUMNZ * sizeof(int));
zmatval = (double *) malloc (NUMNZ * sizeof(double));
zlb = (double *) malloc (NUMCOLS * sizeof(double));
zub = (double *) malloc (NUMCOLS * sizeof(double));
zqmatbeg = (int *) malloc (NUMCOLS * sizeof(int));
zqmatcnt = (int *) malloc (NUMCOLS * sizeof(int));
zqmatind = (int *) malloc (NUMQNZ * sizeof(int));
zqmatval = (double *) malloc (NUMQNZ * sizeof(double));
if ( zprobname == NULL || zobj == NULL ||
zrhs == NULL || zsense == NULL ||
zmatbeg == NULL || zmatcnt == NULL ||
zmatind == NULL || zmatval == NULL ||
zlb == NULL || zub == NULL ||
zqmatbeg == NULL || zqmatcnt == NULL ||
zqmatind == NULL || zqmatval == NULL ) {
status = 1;
goto TERMINATE;
}
strcpy (zprobname, "example");
/* The code is formatted to make a visual correspondence
between the mathematical linear program and the specific data
items. */
zobj[0] = 1.0; zobj[1] = 2.0; zobj[2] = 3.0;
zmatbeg[0] = 0; zmatbeg[1] = 2; zmatbeg[2] = 4;
zmatcnt[0] = 2; zmatcnt[1] = 2; zmatcnt[2] = 2;
zmatind[0] = 0; zmatind[2] = 0; zmatind[4] = 0; zsense[0] = 'L';
zmatval[0] = -1.0; zmatval[2] = 1.0; zmatval[4] = 1.0; zrhs[0] = 20.0;
zmatind[1] = 1; zmatind[3] = 1; zmatind[5] = 1; zsense[1] = 'L';
zmatval[1] = 1.0; zmatval[3] = -3.0; zmatval[5] = 1.0; zrhs[1] = 30.0;
zlb[0] = 0.0; zlb[1] = 0.0; zlb[2] = 0.0;
zub[0] = 40.0; zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND;
/* Now set up the Q matrix. Note that we set the values knowing that
* we're doing a maximization problem, so negative values go on
* the diagonal. Also, the off diagonal terms are each repeated,
* by taking the algebraic term and dividing by 2 */
zqmatbeg[0] = 0; zqmatbeg[1] = 2; zqmatbeg[2] = 5;
zqmatcnt[0] = 2; zqmatcnt[1] = 3; zqmatcnt[2] = 2;
/* Matrix is set up visually. Note that the x1*x3 term is 0, and is
* left out of the matrix. */
zqmatind[0] = 0; zqmatind[2] = 0;
zqmatval[0] = -33.0; zqmatval[2] = 6.0;
zqmatind[1] = 1; zqmatind[3] = 1; zqmatind[5] = 1;
zqmatval[1] = 6.0; zqmatval[3] = -22.0; zqmatval[5] = 11.5;
zqmatind[4] = 2; zqmatind[6] = 2;
zqmatval[4] = 11.5; zqmatval[6] = -11.0;
TERMINATE:
if ( status ) {
free_and_null ((char **) &zprobname);
free_and_null ((char **) &zobj);
free_and_null ((char **) &zrhs);
free_and_null ((char **) &zsense);
free_and_null ((char **) &zmatbeg);
free_and_null ((char **) &zmatcnt);
free_and_null ((char **) &zmatind);
free_and_null ((char **) &zmatval);
free_and_null ((char **) &zlb);
free_and_null ((char **) &zub);
free_and_null ((char **) &zqmatbeg);
free_and_null ((char **) &zqmatcnt);
free_and_null ((char **) &zqmatind);
free_and_null ((char **) &zqmatval);
}
else {
*numcols_p = NUMCOLS;
*numrows_p = NUMROWS;
*objsen_p = CPX_MAX; /* The problem is maximization */
*probname_p = zprobname;
*obj_p = zobj;
*rhs_p = zrhs;
*sense_p = zsense;
*matbeg_p = zmatbeg;
*matcnt_p = zmatcnt;
*matind_p = zmatind;
*matval_p = zmatval;
*lb_p = zlb;
*ub_p = zub;
*qmatbeg_p = zqmatbeg;
*qmatcnt_p = zqmatcnt;
*qmatind_p = zqmatind;
*qmatval_p = zqmatval;
}
return (status);
} /* END setproblemdata */
/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */
static void
free_and_null (char **ptr)
{
if ( *ptr != NULL ) {
free (*ptr);
*ptr = NULL;
}
} /* END free_and_null */
|